Optical structure-property relations in metal and semiconductor nanoparticles

Update Item Information
Publication Type dissertation
School or College College of Science
Department Physics & Astronomy
Author Borys, Nicholas J.
Title Optical structure-property relations in metal and semiconductor nanoparticles
Date 2011-05
Description The optoelectronic properties of nanoscale metal and semiconductor material systems are notably sensitive to their corresponding physical structure. Contemporary synthesis techniques enable careful control of nanoparticle con figurations and therefore provide a wide array of systems where the eff ects of physical morphology on the interaction between nanoscale materials and light can be carefully probed. The investigated properties are immediately relevant to light-harvesting and ultra-sensitive trace-analysis and sensing applications. In this work, the structure-property relationships of both individual semiconductor nanocrystal heterostructures and aggregates of plasmonic silver nanoparticles in rough metal fi lms are probed. The semiconductor heterostructures behave as model light-harvesting systems where optical energy absorbed by one portion of the structure is funneled, on the nanoscale, to a model light-harvesting center, in analogy to photosynthesis. In the plasmonic silver nanostructures, collective optical excitation of the conduction electrons - plasmons - con es electromagnetic radiation to well beyond the traditional diraction limit of light in nanoscale regions called "hot spots." Within these hot spots, light-matter interactions are greatly enhanced and thus enable trace-sensing applications such as Raman scattering from a single molecule. Thorough application of relatively simple single particle spectroscopy techniques is combined with high resolution electron microscopy to elucidate the subtle details on how physical structure controls the optical properties of both material systems. There are four main results of this work. (1) The linear and nonlinear optical response of rough silver fi lms is shown to be enhanced by the excitation of surface plasmon polaritons. (2) The enhanced nonlinear response of rough metal films is conjectured to originate from metal clusters, and the observation of stark fluctuations in their efficiency of second-harmonic generation is reported for the fi rst time. (3) The presence of and enhanced emission from silver clusters of only a few atoms plays an important role in the intrinsic optical response of the silver films with considerable implications for surface-enhanced Raman scattering. (4) The e ffects of physical anisotropy on the electronic states of semiconductor nanocrystals are explicitly identifi ed through correlated optical and electron microscopy of single particles. These eff ects are shown to have important rami cations in the internal energy-transfer process of single nanocrystals.
Type Text
Publisher University of Utah
Subject Metal; Nanoparticle; Optical; Properties; Semiconductor; Optoelectric properties; Metal nanoparticles; Semiconductor nanoparticles; Structure-property relations
Dissertation Institution University of Utah
Dissertation Name Doctor of Philosophy
Language eng
Rights Management Copyright © Nicholas J. Borys 2011
Format Medium application/pdf
Format Extent 40,646,781 bytes
Identifier us-etd3,26228
Source Original housed in Marriott Library Special Collections, QC3.5 2011 .B69
ARK ark:/87278/s66h4z30
Setname ir_etd
ID 194255
Reference URL https://collections.lib.utah.edu/ark:/87278/s66h4z30