The purpose of this investigation was to determine the time course and magnitude of learning effects associated with repeated maximum cycling power tests and to determine if cycle-trained men exhibit different learning effects than active men who are not cycle-trained. Cycle-trained (N = 13) and active men (N = 35) performed short maximal cycling bouts 4 times per day for 4 consecutive days. Inertial load cycle ergometry was used to measure maximum power and pedaling rate at maximum power. Maximum power of the cycle-trained men did not differ across days or bouts. Maximum power of the active men increased 7% within the first day and 7% from the mean of day one to day three. Pedaling rate at maximum power did not differ across days or bouts in either the cycle-trained or active men. These results demonstrate that valid and reliable results for maximum cycling power can be obtained from cycle-trained men in a single day, whereas active men require at least 2 days of practice in order to produce valid and reliable values.

Key words: Skeletal muscle, exercise test, validity, reliability.

Methods

Cycle-trained (N = 13, 27 ± 6 yr, 72 ± 9 kg; mean ± SD) and active men (N = 35, 24 ± 4 yr, 78 ± 17 kg; mean ± SD) were recruited to participate in this study. The cycle-trained men were competitive amateur road and off-road cyclists. The active men participated in racquet sports, weight lifting, running, or American football but did not cycle regularly. This study was approved by the Institutional Review Board at The University of Texas at Austin and meets the ethical standards of the Helsinki Declaration of 1975. All subjects provided written informed consent.

Each subject reported to the laboratory at the same time each day for 4 consecutive days. They performed a 5-minute warm-up by cycling at 100 to 120 rpm at a power of 100 to 120 watts, then rested for 2 minutes prior to performing 4 bouts of maximal acceleration with 2 minutes resting recovery between bouts. Subjects started each bout from rest and accelerated maximally for 3–4 seconds on a verbal command with standardized encouragement. They were instructed to remain seated throughout each bout. Data were recorded for 6.5 crank revolutions. Seat height was self selected and the same height was used for all trials. The ergometer was fitted with bicycle handlebars, cranks, pedals, and seat, and was fixed to the floor. Each subject wore cycling shoes that were fitted with a cleat that locked into a spring-loaded binding on the pedal. A subset of the active men (N = 13) returned the following week and performed 4 days of additional testing under the same protocol.

Maximum cycling power was measured using the inertial load method which determines torque delivered to an ergometer.
Flywheel across a range of pedaling rates. Details of this method have been described previously [12]. Briefly, inertial loading measures the reaction torque of an accelerating flywheel. Power was calculated as the product of flywheel inertia, angular velocity, and angular acceleration with no frictional resistance applied to the flywheel. The reported values for power and pedaling rate were averaged over each complete revolution of the cranks. Maximum power was defined as the highest value within each bout (i.e., apex of the power-pedaling rate relationship) and the pedaling rate for maximum power was the pedaling rate at which maximum power occurred.

Differences in maximum power and pedaling rate at maximum power were evaluated with a repeated measures ANOVA. If the ANOVA indicated significant group by day or group by bout interaction, separate ANOVA were performed for each group. Bonferroni post-hoc analysis was used to determine which days or bouts differed. Significance level was set at $p = 0.05$ for all analyses.

Results

For the cycle-trained men, maximum power (Fig. 1) and pedaling rate at maximum power (Fig. 2) did not differ across days or bouts. For the active men, maximum power increased 4.3% ($p < 0.001$) from day 1 to day 2 and 2.5% ($p = 0.001$) from day 2 to day 3 (Fig. 1). Within day 1, power increased 5.1% ($p < 0.001$) from bout 1 to bout 2, and 1.6% ($p = 0.001$) from bout 2 to bout 3 (Fig. 1). Pedaling rate at maximum power of the active men (Fig. 2) did not differ across days or bouts. Maximum power of the subset of active men who returned for additional testing did not differ from day 3 through day 8 (Fig. 3).

Discussion

This study was designed to determine the time course and magnitude of learning effects associated with repeated maximal power testing in order to determine when stable values for maximal power and pedaling rate at maximum power may be obtained. Our results demonstrate that stable values for maximum cycling power can be obtained from cycle-trained men in one day. This suggests that field studies in which subject access is limited to one test session can provide valid data if the subjects are familiar with the testing activity. The same was not true for the active men, for whom maximal cycling was a novel task. Those men required two days of practice in order to produce stable values for maximum power on subsequent days.

These results are similar to those of Capriotti et al. [4] who reported that mean power (i.e., mean over each 1 sec interval) increased approximately 11% during repeated testing and was stable after two days of practice. Those subjects performed a fatiguing protocol of 10 sprints of 7 seconds each with 30 seconds of recovery, and the ergometer was heavily loaded (11.34 kg). Subjects in the present study performed only 4 sprints of approximately 3.5 seconds with full recovery between sprints. Thus our subjects exerted maximal effort for a total of 14 seconds per day compared with 70 seconds per day for the subjects of Capriotti et al. [4]. Even though the protocol used by Capriotti et al. [4] was quite different than that of the present study, the results are remarkably similar. Thus, valid inferences regarding training programs, ergogenic treatments, or physiological factors depend on adequate familiarization with the test activity which appears to require two days of practice.
change corroborates the findings of Hautier et al. [6] and sug-
ests that pedaling rate for maximum power is dictated by
neuromuscular properties even when performing a novel task.

Power of the active subjects exhibited a non-significant in-
crease of 1% from day 3 to day 4. Thus we could not be certain
that learning was complete. Therefore, 13 of the active subjects
returned the following week for additional testing. Maximum
power produced on test days 5 – 8 did not differ from that pro-
duced on days 3 and 4, suggesting that learning was truly com-
plete by day three.

The inertial load method used in this investigation is unique in
that resistance is provided solely by flywheel inertia. Several
other investigators [2,3,7,10,14] however, have reported
methods that employ both flywheel inertia and frictional re-
sistance. Those methods, like ours, determine maximum pow-
er and describe the power vs. pedaling rate relationship in a
single exercise bout. Consequently, the present findings have
broad application to other methods in which the ability to ob-
tain repeatable and valid results is essential.

References

1. Anselme F, Collomp K, Mercier B, Ahmaidi S, Prefaut C. Caffeine
 increases maximal anaerobic power and blood lactate concentra-
2. Arsac LM, Belli A, Lacour JR. Muscle function during brief maxi-
 mal exercise: accurate measurements on a friction-loaded cycle
3. Buttelli O, Vandewalle H, Peres G. The relationship between max-
 imal power and maximal torque-velocity using an electronic er-
4. Capriotti PV, Sherman WM, Lamb DR. Reliability of power output
during intermittent high-intensity cycling. Med Sci Sports Exerc
1999; 31: 1000 – 1005
5. Froese EA, Houston ME. Performance during the Wingate anaero-
bic test and muscle morphology in males and females. Int J Sports
Med 1987; 8: 35 – 39
 velocity for maximal power production in non-isokinetic cycling
 is related to muscle fibre type composition. Eur J Appl Physiol
1996; 74: 114 – 118
7. Hibi N, Fujinaga H, Ishii K. Work and power outputs determined
 from pedalling and flywheel friction forces during brief maximal
 442
8. Inbar O, Kaiser P, Tesch P. Relationships between leg muscle fiber
1981; 2: 154 – 159
9. Linossier MT, Denis C, Dormois D, Geyssant A, Lacour JR. Ergo-
 metric and metabolic adaptation to a 5-s sprint training pro-
10. Linossier MT, Dormois D, Fouquet R, Geyssant A, Denis C. Use of
 the force-velocity tests to determine the optimal braking force
 for a sprint exercise on a friction-loaded cycle ergometer. Eur J
11. MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ,
 Smith KM. Muscle performance and enzymatic adaptations to
12. Martin JC, Wagner BM, Coyle EF. Inertial-load method determines
 maximal cycling power in a single exercise bout. Med Sci Sports
 Exerc 1997; 29: 1505 – 1512
13. Sargeant AJ. Effect of muscle temperature on leg extension force
 56: 693 – 698
14. Seck D, Vandewalle H, Decrops N, Monod H. Maximal power and
 torque-velocity relationship on a cycle ergometer during the ac-
 celeration phase of a single all-out exercise. Eur J Appl Physiol
 1995; 70: 161 – 168
15. Sleivert GG, Backus RD, Wenger HA. The influence of a strength-
sprint training sequence on multi-joint power output. Med Sci

Corresponding Author:

James C. Martin
Department of Exercise and Sport Science
The University of Utah
250 S. 1850 E. Rm. 200
Salt Lake City, UT 84112-0920
USA

Phone: +1 (801) 581-1558
Fax: +1 (801) 585-3992
E-mail: ess@health.utah.edu