Evidence for a substantial nuclear ordering in solid bcc He\textsubscript{3} at melting pressure has been inferred from solid entropies s_s deduced from measurements of the slope of the melting curve for a liquid-solid mixture cooled by adiabatic compression. At 3.4 mK we find experimentally that $s_s/R = 0.83 \ln 2$. It is likely that much lower temperatures and solid entropies are obtained during parts of the experiments. The possibility for bulk nuclear polarization is also discussed.

It is possible to convert an ordered Fermi liquid to a solid with ordered nuclear spins. More specifically, highly ordered liquid He\textsubscript{3} may be produced readily at temperatures of 10 to 20 mK, a temperature region easily attained by dilution refrigeration, since liquid He\textsubscript{3} is a Fermi liquid with an effective Fermi temperature much greater than 20 mK. Isentropic conversion of liquid to solid should then produce a highly nuclear-spin-ordered solid. Quantitatively, the ordering of the solid may be measured by its entropy. In this work we determined the solid entropy by measuring the slope dP/dT of the melting curve and using the Clausius-Clapeyron equation

$$\frac{dP}{dT} = -\frac{(s_s - s_L)}{(v_L - v_S)},$$

where s_s, v_s and s_L, v_L are the molar entropy and volume on the melting curve for the solid and liquid phases, respectively. Alternatively, nuclear ordering could be observed by forming the solid in a strong magnetic field and measuring the bulk nuclear magnetic moment. This has not been done in the present experiments, but work along these lines is in progress.

At temperatures below a few tenths of a kelvin the entropy of solid He\textsubscript{3} results from disorder in the nuclear-spin system. In zero external field, the spins may be described by an effective spin Hamiltonian

$$\mathcal{H} = -J \sum_{ij} \vec{I}_i \cdot \vec{I}_j,$$

where J is a parameter, and the sum is usually assumed to be over nearest neighbors. Using data of Anderson, Reese, and Wheatley we showed that $J < 0$, in agreement with recent measurements by Pipes and Fairbank; Kirk, Os-good, and Garber; and Sites, Osheroff, Richardson, and Lee. Hence in zero external field, antiferromagnetic nuclear ordering is to be expected at low enough temperatures.

In recent work we demonstrated that it is possible to cool a two-phase mixture of liquid and solid He\textsubscript{3} mechanically to temperatures below 3 mK. However, we did not determine the resultant nuclear ordering. In some preliminary work we measured the nuclear-spin diffusion coefficient D in a solid formed by adiabatic compression. We found that, at the lowest temperatures, D had decreased to about $\frac{1}{3}$ of its temperature-independent value at higher temperatures. This result indicated that something interesting was happening in the nuclear-spin system. However, we interrupted the diffusion measurements in favor of the melting-curve measurements since these have the double advantage of yielding a direct measurement of solid entropy and of being much less sensitive to thermal disequilibrium in the solid nuclear-spin system.
From 0.3 K down to about 30 mK the solid molar entropy is essentially $R \ln 2$ (corresponding to random orientations of the spin-nuclei) as deduced from the liquid entropy at the minimum of the melting curve and from solid heat-capacity measurements at a few hundredths of a kelvin.

The liquid entropy at the melting curve at low temperatures may be calculated self-consistently using the liquid heat capacity at 27.0 atm given by Abel, Anderson, Black, and Wheatley extended to the melting curve, using the expansion coefficient and compressibility given by Anderson, Reese, and Wheatley. Since the difference $\nu_L - \nu_S$ between the liquid and solid molar volumes is known at low temperatures from the work of Scribner, Panczyk, and Adams, measurement of dP/dT along the melting curve allows the solid entropy to be determined from Eq. (1). Furthermore, the temperature calibration can be, and in this work is, determined by taking the solid molar entropy at higher temperatures to be $R \ln 2$.

The low-temperature portion of our apparatus is shown in Fig. 1. Details concerning its operation will be given in a paper currently in preparation. The He3 is compressed via the flexible-walled section by pressurizing liquid He4. The epoxy appendix to the flexible section contains the thermometer and strain gauge for the measurements to be presented here. The cell is precooled by mounting it with the upper portion immersed in the mixing chamber of a continuously operating dilution refrigerator. At low temperatures thermal isolation is provided by the thermal boundary resistance between the helium and the container walls.

The pressure of the He3 is measured with a beryllium-copper strain gauge having a sensitivity of 10^{-4} atm, which is calibrated at 1 K with only liquid in the cell. A magnetic temperature T^* is determined by measuring the 17-Hz susceptibility of powdered cerium magnesium nitrate (CMN) uniformly packed in a right-circular cylinder with diameter equal to height. For CMN we assume $T = T^* + \Delta$ down to 3 mK with $|\Delta|$ less than about 0.2 mK. We have taken $\Delta = 0$ in all computations. The slope and intercept of the straight line relating mutual inductance and T^* were adjusted as indicated above using Eq. (1) in the range 20 to 38 mK to give a best fit of the data to the calculated curve of dP/dT vs T. The resultant melting curve is in general agreement with that of Ref. 14.

Averaged results obtained during the slow warm-up following compression are shown for five runs in Fig. 2. Owing to uncertainties in the temperature scale and/or problems with thermal equilibrium, lower-temperature data were dis-
We do not believe that our measurements are accurate enough to allow the solid to achieve this result. Furthermore, by suitable heating the solid can be formed where required. Whether or not such a high polarization can be attained in practice depends at least on mechanical irreversibilities in the device. In parts of our present work to be presented elsewhere, we find such irreversibilities small. A more serious problem appears to be the attainment of thermal equilibrium within the solid nuclear-spin system itself.

A more detailed account of our work on the melting curve is in preparation. We wish to acknowledge here the important contributions made to measurements of the melting curve, preliminary to those presented here, by Dr. Ralph Rosenbaum and Professor Olli Lounasmaa.

† Research supported by the U. S. Atomic Energy Commission under Contract No. AT(11-1)-34, P. A. 143.
* Work in partial fulfillment by R. T. Johnson of the requirements for the degree of Doctor of Philosophy at the University of Illinois.

5 R. T. Johnson and J. C. Wheatley, to be published.
18W. C. Black, R. T. Johnson, and J. C. Wheatley, to be published.