A Correctness Criterion for Asynchronous Circuit Validation and Optimization

GANESH GOPALAKRISHNAN*
ERIK BRUNVAND†
NICK MICHELL
University of Utah
Dept. of Computer Science
Salt Lake City, Utah 84112
STEVEN M. NOWICK‡
Department of Computer Science
Room 508, Computer Science Building
Columbia University
New York, New York 10027

Keywords: Asynchronous Circuits, Circuit Optimizations, Formal Verification of Hardware, Trace Theory

Abstract. In order to reason about the correctness of asynchronous circuit implementations and specifications, Dill has developed a variant of trace theory [1]. Trace theory describes the behavior of an asynchronous circuit by representing its possible executions as strings called "traces". A useful relation defined in this theory is called conformance, which holds when one trace specification can be safely substituted for another. We propose a new relation in the context of Dill's trace theory, called strong conformance. We show that this relation is capable of detecting certain errors in asynchronous circuits that cannot be detected through conformance. Strong conformance also helps to justify circuit optimization rules where a component is replaced by another component having extra capabilities (e.g., it can accept more inputs). The structural operators of Dill's trace theory — compose, rename and hide — are shown to be monotonic with respect to strong conformance. Experiments are presented using a modified version of Dill's trace theory verifier which implements the check for strong conformance.

1 Introduction

Asynchronous circuits are enjoying a revival, as designers confront problems associated with the complexity of modern VLSI circuits [2]. Despite their many potential advantages, however, the verification of asynchronous circuits remains a difficult problem. Asynchronous circuits have been designed assuming a wide variety of delay models for gates and wires [3, 4]. Furthermore, a number of environmental modes have been used to define a circuit's interaction with its environment, such as fundamental [15] and input/output modes [7]. In practice, the task of verifying asynchronous circuits is greatly simplified by considering only particular classes of behavior, e.g., delay-insensitivity [31], where a circuit's correct operation is independent of delays in circuit components and in the wires.

*Supported in part by NSF Award MIP-8902558
†Supported in part by NSF Award MIP-9111793
‡Supported in part by the Semiconductor Research Corporation, Contract nos. 91-DJ-205 and 92-DJ-205, and by the Stanford Center for Integrated Systems, Research Thrust in Synthesis and Verification of Multi-Module Systems.
that connect them; or speed-independence [6], where a circuit's correct operation is independent of delays in components, while wires are assumed to have negligible delay.

Dill [1] has developed a trace theory for the specification and verification of asynchronous circuits. Trace theory uses the theory of regular languages to model asynchronous circuits by representing executions as strings called “traces.” The symbols in these traces represent signal transitions on the interface terminals of the circuit being represented. Dill has also developed a verifier based on trace theory. The verifier has been applied to a number of speed-independent asynchronous circuits [8, 5] and has uncovered bugs in several published circuits [1]. Nowick [9] has integrated this verifier into the asynchronous circuit synthesis framework used by a research division of Hewlett-Packard [10, 11]. Despite the impressive performance of the verifier, the verification criteria it uses, namely conformance, is inadequate to detect certain classes of commonly occurring errors that can be introduced during speed-independent and delay-insensitive circuit design or during circuit optimization. In this paper, we propose a simple extension to conformance, called strong conformance, and point out when this criterion is useful and interesting during speed-independent and delay-insensitive circuit verification. We first motivate the need for this notion through some examples. Then, we present the theoretical aspects of strong conformance. Finally, we present experiments that illustrate the strengths as well as the limitations of this notion.

Our work on verification raises a fundamental question: what are the most appropriate ways to compare asynchronous circuits, and when are the different approaches useful? This question arises quite naturally, because many comparison relations have been proposed in the area of process calculi such as CCS [12] and CSP [16] (for example, see [17]). Although we do not offer a definitive answer to this question, strong conformance can be seen as one useful contribution to the practical verification of asynchronous circuits.

This work was principally motivated by our inability to reason about the correctness of some of the optimization rules used in Brunvand's asynchronous circuit compiler [18, 19] using existing verification methods.

Section 2 presents the required background of Dill's trace theory, and defines conformance, which is the comparison relation used by Dill. Section 3 defines strong conformance as a small extension to conformance. First, we present an algorithm for verifying this new relation. Next, we provide two examples illustrating strong conformance. Finally, we examine the formal properties of strong conformance. Section 4 presents experiments with an implementation of strong conformance in Dill's trace theory verifier. Section 5 discusses results, related work and conclusions.

2 Background: Trace Theory

In the past decade or so, different trace theories have been developed by various researchers. These trace theories have been applied to the study of concurrent systems: by Hoare [16, Chapter 2], to the characterization of CSP processes; by Rem, Snipscheut, Udding [20, 21] and Ebergen [22] to the analysis, verification, and characterization of speed-independent and delay-insensitive circuits. This paper follows the version of trace theory proposed by Dill [1], who has applied his theory to the verification of speed-independent circuits. Dill has also extended his theory of simple
trace structures to complete trace structures (which are capable of modeling infinite computations) mainly for the study of liveness properties. Because the operations and decision procedures for finite automata on infinite sequences are much more complicated [1], it is not clear how successful the practical adaptation of the theory of complete trace structures will be in the area of asynchronous circuit verification. (For a discussion of related issues, see [23, 24].)

2.1 Definitions and Trace Structures

The following definitions and notations are taken from [1]. Trace theory is a formalism for modeling, specifying, and verifying speed-independent circuits. It is based on the idea that the behavior of a circuit can be described by a regular set of traces, or sequences of transitions. Each trace corresponds to a partial history of signals that might be observed at the input and output terminals of a circuit.

A simple prefix-closed trace structure, written SPCTS, is a three tuple (I, O, S) where I is the input alphabet (the set of input terminal names), O is the output alphabet (the set of output terminal names), and S is a prefix-closed regular set of strings over the alphabet $\alpha = I \cup O$, called the success set. In the following discussion, we assume that S is a non-empty set.

We associate a SPCTS with a module that we wish to describe. Roughly speaking, the success set of a module described by a SPCTS is the set of traces that can be observed when the circuit is "properly used".

With each module, we also associate a failure set, F, which is a regular set of strings over α. The failure set of a module is the set of traces that correspond to "improper uses" of the module. A failure set of a module is completely determined by the success set: $F = (SI - S)\alpha^*$. Intuitively, $(SI - S)$ describes all strings of the form xa, where x is a success and a is an "illegal" input signal. Such strings are the minimal possible failures, called chokes. Once a choke occurs, failure cannot be prevented by future events; therefore F is suffix-closed.

As an example, consider the SPCTS associated with a unidirectional (non-inverting) buffer with input a and output b. In this context, we view a buffer as a component that accepts signal transitions on a and produces signal transitions on b after an unspecified delay. If we were to use buffer properly, its successful executions would include one where it has done nothing (i.e., has produced trace c), one where it has accepted an a but has not yet produced a b (i.e., the trace a), one where it has accepted an a and produced a b (i.e., the trace ab), and so on. More formally, the success set of buffer is $\{c, a, ab, aba, \ldots\}$. This set is a record of all the partial histories (including the empty one, c), of successful executions of buffer. An example of an improper usage of buffer—a choke—is the trace aa. Once input a has arrived, a second change in a is illegal since it may cause unpredictable output behavior. A buffer of this type can be used to model a wire with some delay. Therefore, to transform a speed-independent circuit into a delay-insensitive circuit in the context of Dill's trace theory, buffers are attached to the terminals of the circuit.

We can denote the success set of a SPCTS using a state-transition notation. The success set of buffer, described earlier, is captured by the following specification, where buffer is regarded as
In a process description, we use `|` to denote choice, `→` to denote sequencing, and a system of tail recursive equations to capture repetitive behavior. We use symbols such as `a?` to denote incoming transitions (rising or falling) and `b!` to denote outgoing transitions (rising or falling). The above specification of `BUFFER` corresponds to the finite automaton in Figure 1 (which also shows the choke of `BUFFER`):

![Finite Automaton for BUFFER](image)

Figure 1: The Finite Automaton corresponding to `BUFFER`

When we specify a SPCTS, we generally specify only its success set; its input and output alphabet are usually clear from the context, and hence are omitted.

2.2 Operations on Trace Structures

There are two fundamental operations on trace structures: `compose (||)` finds the concurrent behavior of two circuits that have some wires connected, and `hide` makes some output wires unobservable (suppressing irrelevant details of a circuit's operation). A third operation, `rename`, allows the user to generate modules from templates by renaming wires.

We consider the `compose` operation in more detail below (for further discussion, see [1]). The `compose` operator models the effect of connecting identically named wires between two circuits, called components. Given two components, `A` and `B`, with respective trace structures `T_A = (I_A, O_A, S_A)` and `T_B = (I_B, O_B, S_B)`, the joint behavior of `A` and `B` is denoted by the trace structure `T_A || T_B`. Components `A` and `B` can be composed only if they have no output wires in common, i.e., `O_A \cap O_B = \emptyset`. If `T_{AB} = T_A || T_B`, then the set of outputs of `T_{AB}` is `O_{AB} = O_A \cup O_B` (whenever an output is connected to an input, the result is an output), and the set of inputs is `I_{AB} = (I_A \cup I_B) - O_{AB}` (an input connected to an input is an input). Note that the alphabet, `α_{AB}`, of the composed trace structure is the union of the alphabets of the components, `α_A \cup α_B`.

The success set, `S_{AB}`, of `T_{AB}` is obtained from the success sets of `T_A` and `T_B` using a product construction method, sketched briefly below (for details, see [1]).

Product Construction Method to Define `S_{AB}`

As the success set for a component records the possible executions of the component, similarly the success set that records the possible joint executions of `A` and `B`, `S_{AB}`, must include only those executions that are "in agreement" with the executions of both `A` and `B`. The product construction method to define `S_{AB}` has two steps. **Step 1** determines those executions that are in agreement
with the success sets of \(A \) and \(B \); this step results in an intermediate success set \(S'_{AB} \). **Step 2** then eliminates any “internal failures” that may be present in \(S'_{AB} \) (to be discussed below), to result in the final success set, \(S_{AB} \). To help define \(S_{AB} \), we define \(x \downarrow a \) as the projection of trace \(x \) onto the alphabet \(a \). The projection retains, in order, all the symbols in \(x \) that are also in \(a \). For example, \(abc \downarrow \{c, a\} = ac \), and \(abc \downarrow \{d\} = c \).

Step 1: This step produces a set \(S'_{AB} \) of all traces, \(x \), where the projection of \(x \) onto either alphabet, \(a_A \) or \(a_B \), is a trace belonging to the corresponding success set, \(S_A \) or \(S_B \). That is, actions on common symbols must occur through mutual consensus of the components, while actions on disjoint symbols (i.e., symbols belonging to the alphabet of one component only) are governed only by the rules of operation of the corresponding component. Formally, set \(S'_{AB} \) contains all traces \(x \in (a_A \cup a_B)^* \) where \((x \downarrow a_A) \in S_A \) and \((x \downarrow a_B) \in S_B \).

Step 2: This phase eliminates “internal failures” from \(S'_{AB} \) to obtain the final success set, \(S_{AB} \). Consider a trace \(x \in S'_{AB} \), which is a success in both components. Suppose that component \(A \) can successfully “extend” trace \(x \) by producing output \(a \), where \(a \) then causes a failure in component \(B \). In this case, once trace \(x \) has occurred, the composite circuit can cause its own failure, since component \(A \) may generate output \(a \). As a result, to guarantee no failure in the composed circuit, \(trace \ x \) itself must be avoided — in effect, \(x \) must be classified directly as a failure. In general, a success trace \(x \) in the composed circuit is called an autofailure if \(x \) can be extended by one or more outputs to produce a failure in the composed circuit. The process of obtaining \(S_{AB} \) from \(S'_{AB} \) intuitively “exports” an internal failure to the interface of the circuit. That is, any input signal which ultimately causes a failure is considered as the direct cause of failure. Formally, we obtain \(S_{AB} \) from \(S'_{AB} \) as follows: Initially, let \(S_{AB} = S'_{AB} \). For each trace \(x \in S_{AB} \) and finite sequence of output symbols \(y \in O^*_{AB} \), if \((xy \downarrow a_A) \in F_A \) or \((xy \downarrow a_B) \in F_B \), then \(S_{AB} := S_{AB} - x \) (i.e., remove \(x \) from \(S_{AB} \)). The resulting set \(S_{AB} \) is the final success set of \(A \parallel B \).

2.3 Conformance: The Ability to Perform Safe Substitutions

A trace structure specification, \(T_S \), can be compared with a trace structure description, \(T_I \), of the actual behavior of a circuit. When \(T_I \) implements \(T_S \), we say that \(T_I \) conforms to \(T_S \); that is, \(T_I \preceq T_S \). (The inputs and outputs of the two trace structures must be the same.)

Conformance holds when \(T_I \) can be safely substituted for \(T_S \). More precisely, \(T_I \preceq T_S \) if, for every context \(T' \), whenever \(T_S \parallel T' \) has no failures, \(T_I \parallel T' \) has no failures, either. Intuitively, \(T_I \):

(a) must be able to handle every input that \(T_S \) can handle (otherwise, \(T_I \) could fail in a context where \(T_S \) would have succeeded); and

(b) must not produce an output unless \(T_S \) could produce it (otherwise, \(T_I \) could cause a failure in the surrounding circuitry when \(T_S \) would not).

We illustrate these two facets of conformance, first considering restrictions on input behavior (case (a)). Consider a JOIN element:

\[
J = a? \to b? \to c! \to J \\
\mid b? \to a? \to c! \to J
\]

Next, consider a modified JOIN:

\[J_1 = a? \rightarrow b? \rightarrow c! \rightarrow J_1 \]

Notice that the success set of \(J_1 \) omits the trace \(b;a;c \). Clearly it is not safe to substitute \(J_1 \) for \(J \) in all environments: \(J_1 \) cannot accept a transition on \(b \) as its first input, whereas the environment is allowed to generate a \(b \) as its first output transition, because this would have been acceptable for \(J \). Formally, we say \(J_1 \not\preceq J \), since the implementation cannot accept an input transition which the specification can receive.

However, it is safe to substitute \(J \) for \(J_1 \), since \(J \) can handle every input (and more) that \(J_1 \) can handle; so \(J \preceq J_1 \). Thus, conformance allows an implementation to have “more general” input behavior than its specification.

Next, consider the case of restrictions on output behavior (case (b) above). We begin with a simple case:

\[
\begin{align*}
\text{CONCUR} & \rightarrow \text{MOD} = a? \rightarrow (b! \parallel c!) \rightarrow \text{CONCUR} \rightarrow \text{MOD} \\
\text{SEQNTL} & \rightarrow \text{MOD} = a? \rightarrow b! \rightarrow c! \rightarrow \text{SEQNTL} \rightarrow \text{MOD}
\end{align*}
\]

Note that the success set of \(\text{SEQNTL} \rightarrow \text{MOD} \) omits the trace \(a;c \). It is not safe to substitute \(\text{CONCUR} \rightarrow \text{MOD} \) for \(\text{SEQNTL} \rightarrow \text{MOD} \): some environment of \(\text{SEQNTL} \rightarrow \text{MOD} \) may not accept a transition on \(c \) after producing an \(a \). Therefore, \(\text{CONCUR} \rightarrow \text{MOD} \not\preceq \text{SEQNTL} \rightarrow \text{MOD} \) (intuitively, implementation \(\text{CONCUR} \rightarrow \text{MOD} \) is “too concurrent”).

However, \(\text{SEQNTL} \rightarrow \text{MOD} \) can be safely substituted for \(\text{CONCUR} \rightarrow \text{MOD} \) in any environment. Any environment accepting outputs from \(\text{CONCUR} \rightarrow \text{MOD} \) will also accept outputs generated by \(\text{SEQNTL} \rightarrow \text{MOD} \), so \(\text{SEQNTL} \rightarrow \text{MOD} \preceq \text{CONCUR} \rightarrow \text{MOD} \). Thus, conformance allows an implementation to have “more constrained” output behavior than its specification.

This latter point can be illustrated more dramatically. We consider the earlier JOIN specification, \(J \), and a new implementation:

\[
\begin{align*}
\text{AlmostWood} & = a? \rightarrow b? \rightarrow c! \rightarrow \text{AlmostWood} \\
& \mid b? \rightarrow a? \rightarrow \text{AlmostWood}
\end{align*}
\]

\(J \) can be safely implemented by \(\text{AlmostWood} \) in any context for the following reason. As long as the component and its environment generate the sequence \(abcabcabc \ldots \), \(J \) and \(\text{AlmostWood} \) behave alike. However, suppose that the environment generates the string \(ba \) and waits for output \(c \). \(J \) will generate a \(c \) after seeing \(ba \), thereby allowing the environment to proceed. \(\text{AlmostWood} \), on the other hand, outputs nothing, and waits for a further \(a \) or \(b \) — at the same time as the environment is waiting for a \(c \). In this case, the result is a deadlock. However, because no incorrect outputs are generated, \(\text{AlmostWood} \) is a safe substitution for \(J \); that is, \(\text{AlmostWood} \preceq J \).

Going to the extreme, consider the implementation:

\[
\begin{align*}
\text{BlockOfWood} & = a? \rightarrow \text{BlockOfWood} \\
& \mid b? \rightarrow \text{BlockOfWood}
\end{align*}
\]
This implementation also conforms to J: *BlockOfWood* does nothing useful, but neither does it cause any failures.

In summary, conformance allows an implementation to be a refinement of a specification: an implementation may have "more general" input behavior or "more constrained" output behavior than its specification. However, in practice, one often wants to show not only that an implementation does no harm, but that it also does something useful. Unfortunately, prefix-closed trace theory cannot distinguish "constrained" output behavior from deadlock. In spite of the usefulness of trace theory, this is its greatest practical weakness.

2.4 On Establishing Conformance

As discussed earlier, in order to establish whether an implementation I conforms to a specification S (i.e., $I \preceq S$), it is necessary in principle to show that I can be safely substituted for S in all contexts. Fortunately, a simpler method was first proposed by Ebergen [22] and further developed in the context of his work by Dill [1]. The *mirror*, T_S, of S is defined as the trace structure whose input set is the output set of T_S, whose output set is the input set of T_S, and which has the same success set of T_S. Intuitively, the mirror is the worst-case environment which will "break" any trace structure that is not a true implementation of T_S.

More formally, given SPCTS T_I and T_S (with non-empty success sets), $T_I \preceq T_S$ if and only if $T_I \parallel \overline{T_S}$ is failure-free (i.e., has an empty failure set). This result is proved and justified in [1]. Specifically, the mirror $\overline{T_S}$ produces as an output everything that T_S accepts as an input, so if T_I fails on any of these, there will be a failure in $T_I \parallel \overline{T_S}$. Similarly, $\overline{T_S}$ accepts as an input only what T_S produces as an output, so if T_I produces something else, there will be a failure in $T_I \parallel \overline{T_S}$ as well.

Using this result, Dill has developed a verifier to establish conformance. Given implementation I and specification S, with respective trace structures T_I and T_S, the verifier determines if $T_I \preceq T_S$ as follows:

1. Trace structures T_I and T_S are represented by deterministic finite automata [13].

2. Trace structure $\overline{T_S}$ is constructed.

3. The parallel composition, $T_I \parallel \overline{T_S}$, of implementation, T_I and mirror, $\overline{T_S}$, is obtained, using the product construction method described above.\(^1\)

4. $T_I \preceq T_S$ is checked by determining whether $T_I \parallel \overline{T_S}$ is free of failures. This check is performed by searching the product automaton, depth-first, for a failure trace. If found, the failure trace is printed and the search is aborted.

Figure 2 presents the details of Step 4 of this algorithm.

\(^1\)In practice, Dill’s algorithm avoids the explicit construction of the product machine [1].
To illustrate the algorithm presented in Figure 2, we determine if the modified JOIN element, J_1, conforms to the JOIN element, J, described earlier. The mirror, \mathcal{J}, of J is defined as follows:

$$\mathcal{J} = \begin{cases} a! \to b! \to c? \to \mathcal{J} \\ b! \to a! \to c? \to \mathcal{J} \end{cases}$$

We next obtain the composition $\mathcal{J} \parallel J_1$ using the product construction method. Of the two components, \mathcal{J} and J_1, only \mathcal{J} initially has an enabled output; in fact, both $a!$ and $b!$ are enabled in \mathcal{J}. While the production of $a!$ is acceptable for J_1, the production of $b!$ by \mathcal{J} will cause J_1 to choke. Therefore, $J_1 \not\conform J$.

3 Strong Conformance

Definition: We define $T \subseteq T'$, read T conforms strongly to T', if $T \preceq T'$ and $S_T \supseteq S_{T'}$. The algorithm to check for strong conformance is presented in Figure 3.

The strong conformance relation is safe in that it guarantees conformance. It is not, however, guaranteed to catch all liveness failures; but for a number of examples, a verifier based on strong conformance provides much better error detection capabilities than conformance.

3.1 Examples Illustrating Strong Conformance

Example 1

Consider a specification for an asynchronous circuit to be built, given in a state-transition notation:

$$Spec = \begin{cases} a? \to a'! \to Spec \\ b? \to b'! \to Spec \end{cases}$$

This specification describes a component having input terminals a and b, output terminals a' and b', and the behavior of process $Spec$. Process $Spec$ waits for signal transitions on terminals a and b. If the first transition occurs on input terminal a, $Spec$ generates an output transition on terminal a', and continues to behave as process $Spec$. If the first transition occurs on terminal b, it generates an output transition on terminal b' and similarly continues to behave as process $Spec$.

The behavior of $Spec$ can be realized in many ways. One implementation consists of two (non-inverting) buffer components. In implementation $TwoWires$, the buffers are used to connect input a directly to output a', and input b directly to output b':

$$TwoWires = WireA \parallel WireB$$

$$WireA = a? \to a'! \rightarrow WireA$$

$$WireB = b? \to b'! \rightarrow WireB$$

$TwoWires$ is an “over-implementation” since it can accept more input sequences than required; for example, one a followed by one b. (Implementing exactly the required behavior, on the other
hand, requires additional components.) However it is a correct implementation, because it supports all the behaviors that Spec supports. Therefore, TwoWires can be safely substituted for Spec in any context; that is, TwoWires \preceq Spec. Furthermore, TwoWires strongly conforms to Spec (i.e., TwoWires \sqsubseteq Spec). Superficially, it may seem that \preceq and \sqsubseteq are the same — but the following example shows that this is not the case.

Example 2

Consider the specification of the “universal do-nothing module” [1], BlockOfWood, described earlier:

$$\text{BlockOfWood} = \quad a? \to \text{BlockOfWood}$$

$$\quad b? \to \text{BlockOfWood}$$

Now consider the specification of a JOIN element:

$$J = \quad a? \to b? \to c! \to J$$

$$\quad b? \to a? \to c! \to J$$

According to Dill’s trace theory, BlockOfWood conforms to J; therefore, BlockOfWood is a safe substitution for J. However, BlockOfWood deadlocks and is therefore an undesirable substitution. The strong conformance check BlockOfWood \sqsubseteq J fails, and on this basis we can reject BlockOfWood as a replacement for J. In this example, for our purposes, \sqsubseteq is superior to \preceq.

3.2 Properties of the Strong Conformance Relation

Strong conformance is a transitive relation, because \preceq and \sqsubseteq are transitive. Other important properties of strong conformance are proved below.

Proposition. compose, rename, and hide are monotonic with respect to strong conformance.

Proof Outline. These structural operators are monotonic with respect to \preceq as shown in [1, Page 58]. We are now required to show the additional facts that $S_B \sqsupseteq S_A$ implies:

$$S_{\text{hide}(X)|(B)} \sqsupseteq S_{\text{hide}(X)|(A)} \tag{1}$$

$$S_{\text{rename}(r)|(B)} \sqsupseteq S_{\text{rename}(r)|(A)} \tag{2}$$

$$S_B \parallel C \sqsupseteq S_A \parallel C \tag{3}$$

Equation 1 follows from the fact that $\text{hide}(X)$ is a function which simply removes members of X from every success trace in S_A or S_B (as the case may be). Equation 2 follows from the fact that $\text{rename}(r)$ simply applies the renaming function r to every symbol in S_A or S_B (as the case may be). Finally, Equation 3 follows from the fact that $S_B \parallel C = S_B \cap S_C$ and $S_A \parallel C = S_A \cap S_C$. ◻

In a practical sense, monotonicity is necessary for modular, or hierarchical, verification. For example, it would not help to show that $A \preceq B$ if this did not imply that for any context C, $(A \parallel C) \preceq (B \parallel C)$. More informally, we require of any practical system that if the replacement
of a component is no worse than the replaced part, then the whole system is no worse after the substitution than before.

We also have the following result.

Proposition. If $B \subseteq A$, then $S_{[A]} = S_{[B]}$. In other words, if $B \subseteq A$, the composition of A with its maximal environment \overline{A} (in the sense defined in Section 2.4) will exhibit the same success traces as the composition of B with \overline{A}.

Proof Outline. By definition, if $B \subseteq A$, then $S_B \supseteq S_A$. Also, by definition, $S_{\overline{A}} = S_A$. Now, from the definition of $\|$, $S_{X\|Y} = S_X \cap S_Y$ if $\alpha_X = \alpha_Y$. Therefore, $S_{\overline{A}} = S_A \cap S_{\overline{A}} = S_B \cap S_{\overline{A}} = S_{\overline{B}}$. □

Viewed yet another way, B can be replaced for A in any environment, up to the maximal environment \overline{A}, and one will not observe any difference in the set of transactions that can cross the boundary between \overline{A} and A or \overline{A} and B.

This proof exactly characterizes the notion of strong conformance: B conforms strongly to A if B may offer to accept excess inputs in certain states where A cannot accept them. This excess capability of B is harmless, because the maximal environment of A cannot make use of this capability when B is used as a replacement for A.

4 Experimental Results

4.1 Error Detection in Queue Cell

A queue cell concur-Q is specified by the Petri net [14, 8] in Figure 4, where the queue capacity is set to 1. The queue cell can be realized using the familiar micropipeline circuit $QIMP_1$ shown in Figure 5.

Suppose that the circuit is erroneously implemented as $QIMP_2$. $QIMP_2$ is identical to $QIMP_1$ except for a missing inversion bubble. (The $QIMP_2$ description may be the result of a transcription or editing error, for example.) This “implementation” does nothing wrong, but deadlocks immediately.

$QIMP_2$ conforms to concur-Q, but $QIMP_2$ does not conform strongly to concur-Q. The strong conformance check fails, and generates the error message:

```
... failure trace (RIN AIN)
```

The trace indicates that the implementation cannot produce output AIN after receiving RIN, while concur-Q can.

This example shows that strong conformance can detect certain forms of deadlock that are not detected by conformance. More precisely, if after seeing trace x, the specification has a successful extension through output o while the implementation does not, strong conformance fails.
4.2 1-Location Queue in Place of a 2-Location Queue

Next, we experiment with a 1-location queue used in place of a 2-location queue. Conformance passed the 1-location implementation, since the 1-location queue can be safely substituted for the 2-location queue. However, this implementation certainly has more limited output behavior than the specification. The strong conformance check detects this limited output behavior; it finds the following sequence leading to an error:

\[(\text{STRONG-}CONFORMS\text{-TO-P} \ast \text{concur-Q1} \ast \text{concur-Q2} \ast)\]

\[\ldots\]

Failure path: (RIM AIM RIM AIM)

The strong conformance check could find this failure almost immediately. Increasing the queue size did not increase the verification time substantially; for a 31-location queue in place of a 32-location queue, the error was detected after about 0.1 seconds on a 10-MIPS workstation.

4.3 Call-Merge Optimization

The initial circuits generated by either the occam [18] or hopCP [25, 26] synthesis systems have a number of redundancies. These redundancies arise because the HDL constructs are compiled without taking their contexts into account. During optimization, it is often possible to take advantage of a component’s context, and thereby replace it with a cheaper component. An example of such an optimization, from [18], is shown in Figure 6.

Suppose that a circuit contains the \textit{CALL} element, shown in Figure 6. The behavior of \textit{CALL} is described as follows:

\[
\text{CALL} = a? \rightarrow c! \rightarrow \ldots \rightarrow a'! \rightarrow \text{CALL} \\
\mid b? \rightarrow c'! \rightarrow \ldots \rightarrow b'! \rightarrow \text{CALL}
\]

Suppose that during the course of optimization, the \(c'\) output of \textit{CALL} is connected back to its \(c\) input as shown in \textit{CALL1} in Figure 6. It is assumed that \textit{CALL1} is being operated in a delay-insensitive context, as was the original circuit (\textit{i.e.}, components and wires are assumed to have arbitrary delay). The delay-insensitive behavior of \textit{CALL1} is

\[
\text{CALL1} = a? \rightarrow (c'! \parallel a'!) \rightarrow \text{CALL1} \\
\mid b? \rightarrow (c'! \parallel b'!) \rightarrow \text{CALL1}
\]

where the notation means: after performing \(a?\), perform \(c'!\) and \(a'!\) in some order before repeating the behavior of \textit{CALL1} (and similarly for the second branch of the choice). The circuit, \textit{CALL1}, can be replaced by \textit{MCALL1} (shown in Figure 6), which is smaller and faster than \textit{CALL1}. Clearly \textit{MCALL1} is not equivalent to \textit{CALL1}, because the execution sequence

\[a?; c'; b?\]

is possible for \textit{MCALL1} but not for \textit{CALL1}.
We have $MCALL_1 \preceq CALL_1$ as well as $MCALL_1 \subseteq CALL_1$. While the former check only guarantees that there will be no chokes if $MCALL_1$ replaces $CALL_1$, the latter check also assures us that $MCALL_1$ can exhibit all the successful traces of $CALL_1$. As a result, strong conformation insures that $MCALL_1$ has neither the deadlock behavior illustrated in Section 4.1 nor the constrained output behavior illustrated in Section 4.2. Strong conformance has been used to validate a number of other optimizations in the occam synthesis system [18] as well.

4.4 Generalized Selector

An interesting phenomenon occurs when the specification for a circuit includes non-deterministic choice. Consider a generalized selector GS:

$$GS = a? \rightarrow (b! \rightarrow GS \mid c! \rightarrow GS)$$

where $|$ denotes choice (in this example, a non-deterministic choice). When this module receives an input on a, it makes a transition on either b or c.

Now consider the specification of an alternating selector [1]:

$$AS = a? \rightarrow b! \rightarrow a? \rightarrow c! \rightarrow AS$$

$AS \preceq GS$ (but not vice-versa) showing that AS is a safe substitution for GS. However, neither $AS \subseteq GS$ (because $S_{GS} \not\subseteq S_{AS}$ — in fact, $S_{AS} \subset S_{GS}$) nor $GS \subseteq AS$ (because GS does not conform to AS).

Clearly, AS is a valid replacement for GS. For example, since GS can make a non-deterministic choice, it might decide to choose strictly alternating outputs (thus, restricting its behavior to that of AS). On the other hand, it is also the case that AS cannot implement all of the output behaviors possible in GS.

In summary, in this example, strong conformance is too restrictive a criterion from the point of view of “safe substitution”. However, if what is desired is that every trace specified by GS is possible in an implementation, then implementation AS is unacceptable; in this case, strong conformance supports the desired point of view. Thus, the appropriateness of a verification relation — conformance vs. strong conformance — depends precisely on the design goals being served by verification. This point is explored further in the next subsection.

4.5 A Caveat in Applying Conformance Checks

As shown in the previous examples, strong conformance can detect common errors (such as omitting a “bubble” at the input of a C-element) which cannot be detected by conformance. However, in using the strong conformance check in practice, one must keep in mind the assumptions underlying conformance versus strong conformance.

To illustrate this point, consider the specification of a four-phase to two-phase converter with “quick return” (see Figure 7):

$$QR42_SPEC = r4? \rightarrow ((r2! \rightarrow a2?) \parallel (a4! \rightarrow r4?)) \rightarrow a4! \rightarrow QR42_SPEC$$
where \(((a4! \rightarrow r4?) \parallel (r2! \rightarrow a2?)) \) represents all possible overlapped executions of \((a4! \rightarrow r4?) \) and \((r2! \rightarrow a2?) \). This specification describes a module which converts from a 4-phase handshaking protocol (e.g., \(r4? \rightarrow a4! \rightarrow r4? \rightarrow a4! \)) on the left interface to a 2-phase handshaking protocol (e.g., \(r2! \rightarrow a2? \)) on the right interface.

Consider an implementation \(QR42_{\text{IMP}} \) of \(QR42_{\text{SPEC}} \):

\[
QR42_{\text{IMP}} = r4? \rightarrow (r2! \rightarrow a2? \rightarrow a4! \rightarrow r4?) \rightarrow a4! \rightarrow QR42_{\text{IMP}}
\]

This implementation operates in accordance with the specification, but the concurrent behavior of \(QR42_{\text{SPEC}} \) has been sequentialized. Implementation \(QR42_{\text{IMP}} \) conforms to \(QR42_{\text{SPEC}} \); however, \(QR42_{\text{IMP}} \) does not conform strongly to \(QR42_{\text{SPEC}} \). The error-trace produced by the failed strong conformance check is \((R4 \ A4) \). That is, \(QR42_{\text{IMP}} \) is incapable of producing an \(A4 \) immediately following an \(R4 \).

Depending on the application, conformance might be the appropriate verification relation, since it indicates that \(QR42_{\text{IMP}} \) is a safe substitution for \(QR42_{\text{SPEC}} \). On the other hand, strong conformance indicates that \(QR42_{\text{IMP}} \) has more constrained output behavior than \(QR42_{\text{SPEC}} \). In particular, \(QR42_{\text{IMP}} \) allows no concurrency between outputs \(r2 \) and \(a4 \). For certain applications, such limited behavior may be unacceptable; strong conformance successfully detects an error.

This example illustrates that the usefulness of a verification relation depends on the intended design goals. Strong conformance is not a general solution to the problem of asynchronous verification. However, for many applications, it is a simple and powerful formalism for locating errors that cannot otherwise be detected by conformance.

5 Discussion, Related Work, and Conclusions

A relation \textit{strong conformance} between trace structures has been presented and its various uses have been pointed out. This notion is closely related to the definition of \textit{decomposition} presented by Ebergen [22]. Key differences between our work and Ebergen’s are noted below, and related work is also discussed.

Ebergen’s trace theory is designed with different objectives: to specify computations, and synthesize circuits through \textit{calculations} using trace-theoretic rules. This trace theory does not directly relate to circuit components; for instance, two trace structures containing the same output symbol can be \textit{weaved}. The “weave” operator merely captures constraints on joint execution; it does not correspond to the act of connecting two circuit outputs. In contrast, Dill’s \(\parallel \) operator relates directly to the composition of circuit components; hence, Dill prevents the composition of two trace structures having the same output symbol.

In Ebergen’s trace theory, the link between trace theoretic operators and circuit behavior is brought out through the following key notions and theorems: \textit{decomposition}, \textit{DI decomposition}, the \textit{separation theorem}, and the \textit{substitution theorem}. Together with a rich collection of equational laws on \textit{commands} (where commands denote trace structures), Ebergen’s trace theory is used to synthesize correct circuits, without having to first “generate” a circuit and then “test” it using
a verifier (as has been the approach suggested here). A tool to demonstrate the power of Eber- gen’s trace theory, called VerDect, is now available [30]. VerDect checks for Ebergen’s condition of decomposition, in effect performing a verification under the speed-independent model (delay-insensitivity is guaranteed under Ebergen’s method of synthesis by performing a syntactic check on decompositions [22, 31]). Dill’s and Ebergen’s work address the two prevalent points of view: post-hoc verification after “intelligent human design” vs. “correct by construction” design.

The notion of strong conformance is latent in Ebergen’s definition of the decomposition relation [22, Definition 3.1.0.0, Page 42] — as was discovered after the fact by us. A similar idea called input liberalization has also been proposed by Ad Peeters [32] — again discovered after the fact. However, neither Ebergen nor Peeters suggest using their definitions for validating circuit optimizations, as we do here.

An alternative methodology for translating concurrent process descriptions in a simple language into delay-insensitive circuits is described by Weber et al. [33]. The correctness of this compiler is shown by exhibiting a bisimulation relation [12] between the state transition system of the input description and the circuit generated from it. The authors point out that in general bisimulation is too strong an equivalence relation for use in verification. For example, although the optimization illustrated in Figure 6 is certifiable using strong conformance, the state transition systems of the unoptimized and the optimized circuits shown in this figure are not bisimilar. In fact, a notion of correctness identified by Dill [1] called conformation equivalence (defined to be true when \(\text{imp} \preceq \text{spec} \) and \(\text{spec} \preceq \text{imp} \)), which is much weaker than the bisimulation relation, also cannot explain the relationship between the unoptimized and the optimized versions of the circuits in this figure. The fact that some correctness criteria prove to be “too strong” stems from the fact that optimizations, both at the high level as well as at the circuit level, do not usually replace equals by equals. However, bisimulation as well as conformation equivalence are correctness criteria that are useful in their own ways. Thus, we re-emphasize the generally agreed upon fact that for supporting hardware verification in practice, a catalog of correctness criteria is needed, and the designer should apply judgment in choosing the “right” correctness criterion for the task at hand.

The process algebra developed by Udding and Josephs holds promise to contain state explosion [34, Remark on page 2], as circuits are derived through calculations in their process algebra, rather than verified post-hoc, as with Dill’s verifier. However, so long as the two points of view exist — post-hoc verification after “intelligent human design” vs. “correct by construction” design using intelligent calculations —, both approaches have an important role to play.

Finally, work in verification of asynchronous circuits appears to be proceeding along (at least) two distinct lines: (1) a class of work that uses various trace models; (2) a class of work based on process algebras. Many of the notions used in these areas seem to be conceptually similar: *e.g.*, autofailure manifestation [1] (which converts possible failures to actual failures) and may/must pre-orders (used by [17]). However there are fundamental differences between these approaches as well: *e.g.*, unidirectional wires carry information only one way, so that a component cannot refuse an input; however, a CCS/CSP rendezvous can be refused by not participating. One hopes to see unifying efforts relating these as yet unrelated efforts.

Acknowledgments. Thanks to Jo Ebergen for his insightful feedback on an earlier version of this
paper.

References

Notation and Initialization:

- Define $\hat{T} =$ if $(T = T_0)$ then T_1 else T_0.
- Define $next(s, x)$ to be the next state reached from state s on symbol x.
- Initialize a global set of state pairs, $visited = \emptyset$.
- Call $conforms-to-p \left(\overline{T_S}, T_1, \text{start-state}(\overline{T_S}), \text{start-state}(T_1) \right)$.

$conforms-to-p-1 \left(T_0, T_1, s_{t0}, s_{t1} \right) =$
if $(s_{t0}, s_{t1}) \in visited$
then return
else
begin
$visited := visited \cup \{(s_{t0}, s_{t1})\}$;
for each $T \in \{T_0, T_1\}$
for each enabled output x of T
if x is enabled in T
then $conforms-to-p-1 \left(T_0, T_1, next(st_0, x), next(st_1, x) \right)$
else ERROR (print failure trace and abort)
end if
end for
end for
end if
end $conforms-to-p-1$

$conforms-to-p \left(T_0, T_1, s_{t0}, s_{t1} \right) =$
begin
$conforms-to-p-1 \left(T_0, T_1, s_{t0}, s_{t1} \right)$;
print(“success”)
end
end $conforms-to-p$

Figure 2: Algorithm for Checking Conformance
Notation and Initialization:

- Define $\bar{T} = \text{if } (T = T_0) \text{ then } T_1 \text{ else } T_0$.
- Define $\text{next}(s, x)$ to be the next state reached from state s on symbol x.
- Initialize a global set of state pairs, $\text{visited} = \emptyset$.
- Call $\text{strong-conforms-to-p} (\bar{T}_S, T_1, \text{start-state}(\bar{T}_S), \text{start-state}(T_1))$.

\[
\text{strong-conforms-to-p-1} (T_0, T_1, s_0, s_1) = \\
\text{if } (s_0, s_1) \in \text{visited} \text{ then return else begin} \\
\text{visited} := \text{visited} \cup \{(s_0, s_1)\}; \\
\text{for each enabled input } x \text{ of } T_0 \quad (* \text{Strong conformance checking loop } *) \\
\text{if } x \text{ is not enabled in } T_1 \\
\text{then } \text{ERROR (print failure trace and abort)}; \\
\text{end if} \\
\text{end for}; \\
\text{for each } T \in \{T_0, T_1\} \\
\text{for each enabled output } x \text{ of } T \\
\text{if } x \text{ is enabled in } T \\
\text{then } \text{strong-conforms-to-p-1} (T_0, T_1, \text{next}(s_0, x), \text{next}(s_1, x)) \\
\text{else } \text{ERROR (print failure trace and abort)} \\
\text{end if} \\
\text{end for} \\
\text{end for} \\
\text{end if} \\
\text{end strong-conforms-to-p-1}
\]

\[
\text{strong-conforms-to-p} (T_0, T_1, s_0, s_1) = \\
\text{begin} \\
\text{strong-conforms-to-p-1} (T_0, T_1, s_0, s_1); \\
\text{print("success")} \\
\text{end} \\
\text{end strong-conforms-to-p}
\]

Figure 3: Algorithm for Checking Strong Conformance
Figure 4: Petri Net Specification of a Queue

Figure 5: Two Different Queue Elements

Figure 6: Call—Merge Optimization: CALL, CALL1, and MCALL1, respectively

Figure 7: QR42 Converter Specification